Publications

Found 2855 results
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Mirzadeh M, Guittet A, Burstedde C, Gibou F.  2016.  Parallel level-set methods on adaptive tree-based grids. JOURNAL OF COMPUTATIONAL PHYSICS. 322:345-364.
Mirzadeh M, Theillard M, Gibou F.  2011.  A second-order discretization of the nonlinear Poisson-Boltzmann equation over irregular geometries using non-graded adaptive Cartesian grids. JOURNAL OF COMPUTATIONAL PHYSICS. 230:2125-2140.
Mirzadeh M, Nabi A, Moehlis J, Gibou F.  2012.  Minimum Energy Spike Randomization for Neurons. Proceedings of the American Control Conference. :4751-4756.
Mirzadeh M, Nabi A, Moehlis J, Gibou F.  2013.  Minimum energy desynchronizing control for coupled neurons. JOURNAL OF COMPUTATIONAL NEUROSCIENCE. 34:259-271.
Mineev-Weinstein M., Khavinson D., Putinar M., Teodorescu R..  2010.  LEMNISCATES DO NOT SURVIVE LAPLACIAN GROWTH. MATHEMATICAL RESEARCH LETTERS. 17:335-341.
Min C, Gibou F.  2006.  A second order accurate projection method for the incompressible Navier-Stokes equations on non-graded adaptive grids. JOURNAL OF COMPUTATIONAL PHYSICS. 219:912-929.
Min C, Gibou F.  2007.  A second order accurate level set method on non-graded adaptive Cartesian grids. JOURNAL OF COMPUTATIONAL PHYSICS. 225:300-321.
Min C, Gibou F.  2007.  Geometric integration over irregular domains with application to level-set methods. JOURNAL OF COMPUTATIONAL PHYSICS. 226:1432-1443.
Min C, Gibou F.  2012.  Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions. JOURNAL OF COMPUTATIONAL PHYSICS. 231:3246-3263.
Min C, Gibou F.  2008.  Robust second-order accurate discretizations of the multi-dimensional Heaviside and Dirac delta functions. JOURNAL OF COMPUTATIONAL PHYSICS. 227:9686-9695.
Min C, Detrixhe M, Gibou F.  2013.  A parallel fast sweeping method for the Eikonal equation. JOURNAL OF COMPUTATIONAL PHYSICS. 237:46-55.
Min C, Gibou F.  2012.  On the performance of a simple parallel implementation of the ILU-PCG for the Poisson equation on irregular domains. JOURNAL OF COMPUTATIONAL PHYSICS. 231:4531-4536.
MILLER ML, MELLICHAMP DA.  1995.  DEVELOPMENT OF AN END-POINT DETECTION PROCEDURE FOR THE POST-EXPOSE BAKE PROCESS. PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE). 2439:78-88.
Mhaskar H.N, Chandrasekaran S..  2015.  A minimum Sobolev norm technique for the numerical discretization of PDEs. JOURNAL OF COMPUTATIONAL PHYSICS. 299:649-666.
Mezic I.  2016.  On Comparison of Dynamics of Dissipative and Finite-Time Systems Using Koopman Operator Methods. 49:454-461.
Mezic I, Chang DE, Loire S.  2003.  Closed-form solutions in the electrical field analysis for dielectrophoretic and travelling wave inter-digitated electrode arrays. JOURNAL OF PHYSICS D-APPLIED PHYSICS. 36:3073-3078.
Mezic I, Bottausci F, Mader M-A.  2009.  ELECTROKINETIC MIXING IN MICROPLATES AND ITS APPLICATIONS TO KINASE AND ELISA-ASSAY TYPE REACTIONS. :539-542.
Mezic I.  2005.  Spectral properties of dynamical systems, model reduction and decompositions. NONLINEAR DYNAMICS. 41:309-325.
Mezic I.  2003.  Controllability, integrability and ergodicity. MULTIDISCIPLINARY RESEARCH IN CONTROL. 289:213-229.
Mezic I.  2015.  On Applications of the Spectral Theory of the Koopman Operator in Dynamical Systems and Control Theory. :7034-7041.
Mezic I, Budisic M.  2012.  Geometry of the ergodic quotient reveals coherent structures in flows. PHYSICA D-NONLINEAR PHENOMENA. 241:1255-1269.
Mezic I, Vaidya U.  2004.  Controllability for a class of area-preserving twist maps. PHYSICA D-NONLINEAR PHENOMENA. 189:234-246.
Mezic I, Vainchtein D.  2004.  Optimal control of a co-rotating vortex pair: Averaging and impulsive control. PHYSICA D-NONLINEAR PHENOMENA. 192:63-82.
Mezic I, Mohr R.  2010.  The Use of Ergodic Theory in Designing Dynamics for Search Problems.. IEEE Conference on Decision and Control. :7300-7307.
Mezic I, Georgescu M.  2015.  Building energy modeling: A systematic approach to zoning and model reduction using Koopman Mode Analysis. ENERGY AND BUILDINGS. 86:794-802.

Pages